
AFRL-RH-WP-TP-2008-0007

Cognitive Design Patterns

Christopher R. Hale

Science Applications International Corporation
Dayton OH 45431

Vincent Schmidt

Air Force Research Laboratory
Cognitive Systems Branch

June 2008

Interim Report

Air Force Research Laboratory
Human Effectiveness Directorate
Warfighter Interface Division
Cognitive Systems Branch
Wright-Patterson AFB OH 45433-7022

Approved for public release;
distribution is unlimited.

NOTICE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by the 88th Air Base Wing Public Affairs Office
and is available to the general public, including foreign nationals. Copies may be obtained
from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

AFRL-RH-WP-TP-2008-0007

 //SIGNED//
VINCENT A. SCHMIDT
Work Unit Manager
Cognitive Systems Branch

 //SIGNED//
DANIEL G. GODDARD
Chief, Warfighter Interface Division
Human Effectiveness Directorate
Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

June 2008
2. REPORT TYPE

Conference Proceedings
3. DATES COVERED (From - To)

4.TITLE AND SUBTITLE

5a. CONTRACT NUMBER
FA8650-04-D-6405

Cognitive Design Patterns 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62202F

6. AUTHOR(S)

5d. PROJECT NUMBER

1Christopher R. Hale, 2Vincent Schmidt

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7184HEX6
 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

1Science Applications International Corporation
 Dayton OH 45431

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
AFRL/RHCS 2Air Force Materiel Command

Air Force Research Laboratory
Human Effectiveness Directorate

11. SPONSOR/MONITOR’S REPORT

Warfighter Interface Division NUMBER(S)
Cognitive Systems Branch
Wright-Patterson AFB OH 45433-7022 AFRL-RH-WP-TP-2008-0007
12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

 13. SUPPLEMENTARY NOTES
WorldComp 2008, Las Vegas, NV, July 14-17, 2008.
88th ABW/PA cleared on 25 June, 2008, WPAFB-08-3825
 14. ABSTRACT

We introduce the concept of cognitive design patterns and discuss ways in which these
patterns can better integrate early work analyses with software development. Cognitive
design patterns are units of work that, in combination, enable human operators to accomplish
the range of tasks needed for success in complex systems. Each pattern consists of a
normative model of the relevant cognitive competency, expressed in terms accessible to
software design and practice. Our proposal is that these patterns be included as resources
in GUI builders, thereby adding standardized design capabilities to the software engineering
toolkit.

15. SUBJECT TERMS
Cognition, HCI, Design Patterns

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Vincent A. Schmidt

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

SAR

8

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. 239.18

 i

THIS PAGE LEFT INTENTIONALLY BLANK

ii

1

Cognitive Design Patterns
Christopher R. Hale

Science Applications International Corporation
Dayton, OH 45431

Vincent Schmidt
Air Force Research Laboratory

Wright-Patterson Air Force Base
Dayton, OH, USA

Abstract We introduce the concept of cognitive design
patterns and discuss ways in which these patterns can
better integrate early work analyses with software
development. Cognitive design patterns are units of
work that, in combination, enable human operators to
accomplish the range of tasks needed for success in
complex systems. Each pattern consists of a normative
model of the relevant cognitive competency, expressed
in terms accessible to software design and practice. Our
proposal is that these patterns be included as resources
in GUI builders, thereby adding standardized design
capabilities to the software engineering toolkit.

Keywords: Cognition, HCI, Design Patterns

1.0 Introduction
One of the enduring frustrations of both the Cognitive
Systems Engineering (CSE) and software development
communities is the apparent inability to communicate
with one another when designing complex systems.
The CSE community has developed many methods and
tools that can lead to a thorough understanding of the
nature of work and the human-centered requirements for
a system. However, this understanding often is not
adequately conveyed to the development community in
a way that is actionable. That is, there exists no good
way to translate “requirements,” as defined by the
cognitive systems engineer, to code used by the
software engineer to instantiate a working system.
Fundamentally, this problem is comprised of two parts,
both of which fall primarily at the feet of the cognitive
system engineer. First, the content produced by the
CSE community often is inadequate for the needs of the
system and software engineering communities, often
addressing issues that do not bear on design needs at a
level of analysis that the engineering community can
effectively use. Second, the information produced by
the CSE community often is not communicated to the
engineering communities in ways that enable
incorporation of the information into ongoing design
process. To be useful, CSE analysis results should be
articulated in the language of requirements,
specifications and normative principles. Instead, these
analyses often are stated in the language of theories,
controlled experiments and idiosyncratic results.

One solution to these problems would be to develop the
kinds of content that lend themselves to requirements,

specifications and normative principles and then to
communicate this content to the engineering
development process in the language of engineering
development. An important concept used by the
software engineering community to define and
document the content of useful concepts is that of
software design patterns. We are attempting to extend
the design pattern concept to the problem of integration
between CSE and engineering development by defining
Cognitive Design Patterns (CDP). These are normative
units of cognition that, when combined in different
ways, can account for the work required in any context.
Work elements upon which such patterns are based are
identified and characterized during the CSE analysis
that is carried out in the early stages of system design.
Cognitive units are derived from these work elements
and are “parameterized” for the specific design problem
at hand. These normative cognitive units, along with
other information obtained from the CSE analysis, are
combined with other elements of system analysis to
formulate system requirements and build a system
model.

In addition to using the work elements to define and
specify cognitive components at the design level, it is
also possible to use the elements within a structured
software development environment. Contemporary
graphical user interfaces (GUIs) are being created by
programmers using GUI-builder programs that
specialize in GUI layout and corresponding code
generation. Since cognitive work elements often model
processes that include visual or procedural components,
a list of work element “widgets” could be added as a
GUI builder module. Such an implementation makes the
cognitive component of design look even more like
“cognitive design patterns” to both the designer and the
implementer.

Adding a set of cognitive work element widgets to a
GUI builder application brings two distinct advantages.
First, relevant visualizations for the corresponding
cognitive tasks could be suggested to the coder. This
enables the programmer to more easily select
appropriate techniques for implementing the cognitive
specifications without fear of misrepresenting the
requirements. Once a cognitive work element widget is
chosen, a coding wizard might be used to assist
developers with selecting and parameterizing an
appropriate visualization, and a code template could

2

provide the basis for the resulting code in the
programming language of choice.

Second, direct selection of the work element from a list
of cognitive work element widgets promotes direct
traceability back to the requirements. This level of
traceability is useful for ensuring that all requirements
have been accounted for in the system. Nearly as
important, this traceability can be used to justify the
reasons a system has a particular “look and feel,”
answering such questions as why a screen or system
function looks or behaves a certain way.

The next section of this paper introduces the concept of
cognitive work elements in more detail, providing an
enumerated list of (what the authors would claim as) a
comprehensive set of cognitive operations. These work
elements are a valuable part of the initial system
specification, providing early systems engineering
inputs into the system design process.

For software systems, the paper also describes a
mechanism by which developers can directly include
these work elements in the application by selecting
work elements as “widgets” within a GUI builder. This
approach provides programmers a guided method for
implementing cognitive requirements, and also shows
end-to-end traceability from the requirements to the
final software application.

Before proceeding to our own ideas and research, tt
must be mentioned that others, especially within the
human factors community, have also worked to define
design patterns. Most of these works concentrate on
high-level patterns of work and cognition, however, and
fall short of introducing a mechanism through which a
technologist has direct access to use the pattern in a
software system implementation as we highlight below.
See [1-4] for excellent examples of previous work.

2.0 Work Elements
From the point of view of Cognitive Systems
Engineering (CSE), traceability is a crucial challenge to
successful design. By traceability we mean the ability
to relate originating (from the Cognitive Work Analysis
(CWA)) and functional requirements defined early in a
development program to the final artifacts that
constitute the system under development. Ideally, one
should be able to relate these requirements to the
resulting artifacts through the design commitments
made at the various stages along the development path
of the system. Thus, when customers and users of the
system ask “why does this artifact look the way it does
and behave the way it does,” the designer of a traceable
system should be able to “reverse engineer” the artifact
back through each series of design decisions to the

original requirements contained in the CWA.

How does one explicitly relate the information
contained in the CWA to the resulting artifact, and do so
in terms of the engineering process that (should) form
the bridge between these two points? Our approach has
been to find ways to integrate the cognitive
requirements with all stages of the system engineering
process, thereby ensuring that the artifact that is
eventually built is formed and constrained by this
information. We do this by developing a matrix that
explicitly relates the Cognitive Workflow Elements
(CWE) identified in the original CWA to the system
requirements resulting from early system analysis and
modeling.

We define CWE as “units” of workflow required of the
human system component to carry out elements of work
that a system is being built to accomplish. The CWE
for a particular system are identified by analyzing the
contents of the CWA, critical decision analysis and
other analyses carried out in the early stages of a
development effort. Typically, a small set of CWE will
result from this analysis. For example, consider a CWA
for a visualization system designed to support
operational assessment. Based on a set of concept maps
developed through documentation, observation and
detailed interviews with Subject Matter Experts (SME),
we identified the CWE shown in Table 1.

Table 1. CWE for Operational Assessment

Acquire Communicate Compare Infer
Decide Discriminate Estimate Integrate
Assign Aggregate Evaluate Identify
Choose Describe Generate Interpret
Classify Detect Match Plan
Monitor Recognize Prioritize Verify

These elements are adequate to encompass all of the
cognitive workflow required to carry out operational
assessment. After the element set is identified, we
develop conceptual definitions for each element. For
example, our definition for detect, as carried out within
the context of operational assessment, was: Become
aware of the existence of an object, value or attribute.
We then create a matrix that juxtaposes the CWE
against the system requirements. A fragment of this
matrix for an operational assessment visualization
system is shown in Table 2, with system requirements in
the left-most column and the CWEs from Table 1 across
the top.

Notice that some cells of this matrix contain check
marks. These indicate that the corresponding CWE
participates in satisfying the system requirement in the

3

adjacent row. Thus, each row specifies the various combinations of CWE required for effective operation of the
system, where effective operation is a function of adherence to the system requirements. This will explicitly link the
CWE to the resulting system design through the system requirements, thereby enabling traceability. There is one
further, and crucial, step to be taken once the CWE have been identified, conceptually defined and mapped to the
system requirements. This is to develop models of the CWE.

Table 2. Traceability Matrix for an Operational Assessment Visualization System

Development of such models makes the system
requirements executable. With executable system
requirements, expressed through rigorous models of the
CWE, it is possible to create integrated system
simulations that will enable tradeoff analyses to be
carried out prior to specification of detailed software
requirements or development of physical system
concepts. To facilitate this process we develop
normative models of each CWE that will allow
exploration of the variables and parameters expected to

affect system effectiveness.

For example, consider the following requirement for the
operational assessment visualization system mentioned
above:

The system shall provide a way to derive intended

and unintended effects from tactical assessment results.

Referring to concept maps developed in the initial CWA, we find that this requirement can be satisfied with a
combination of the following CWE: Inference, acquisition, classification, detection, evaluation, interpretation, and
recognition. The executable model of this requirement will be comprised of submodels for each CWE, organized
into a task network model of the overall work environment. We normally use a higher-level, discrete-event
performance modeling package, such as the Combat Automation Requirements Testbed (CART) to carry out these
simulations. When combined with environment and system models these human operator modeling packages enable
us to express broad ranges of human performance within the context of overall systems, thereby allowing study of
the kinds of constraints that will limit performance. Consider, for example, the interpretation element of the above
requirement, where interpretation is defined as determining the task-relevant value of data or information. We
assume that interpreted value is a function of the timeliness (T) and credibility (C) of the data or information
received. Further assume that timeliness follows a sigmoid function in which the timeliness of information ranges
from 1 immediately after it becomes available down to an asymptotic value approaching zero after many hours. In
this case we can define interpreted value as:

4

V = TC

Where: T = 1 – [1/1 + e –t] and
C = logb(Σzivi)

Developing similar models for each CWE allows us to
model ranges of performance for each of the
requirements, with individual low-level models being
connected together through the human system model.
This allows us to model a wide range of work demands
on the human component of the system and to produce
estimates of human performance that can be used by
other members of the system development team to
conduct trade studies. These models also allow us to
evaluate the conformance of human operators to
requirements as the requirements are further refined to
include system performance or effectiveness
specifications, thereby connecting the humans to
measurement of overall system effectiveness.

With executable models of the requirements in hand, the
cognitive system engineers can then begin developing
visualization concepts for system interfaces. Each
cognitive work element has basic visualization
requirements defined for it that we assume are
consistent across contexts. For example, the cognitive
element compare involves examining two or more
objects in terms of their similarities and differences.
The visualization requirements for this element include
displaying to users the attributes and values of objects
being compared. Further, the display should facilitate
the comparison being carried out, for example, by
highlighting the similarities and differences through
some method of ranking, coding or some other means.
As this example shows, there will be a basic structure
associated with each element as well as performance
parameters for the elements. Parameters for compare
might include the number of to-be-compared elements
that can be held in short-term memory and sensitivity
limitations on attribute similarity used in comparisons.

The requirements provide the context, constraints and
boundaries for visualization design for each CWE.
Thus, while the basic requirements will not change
across elements, the values of parameters associated
with modeling of elements will change according to the
context of each requirement. Consider a requirement to
compare an air attack result against a target, located
close to a mosque, with the intended point of attack to
assess progress toward an effect. In this case the
sensitivity parameter for the comparison would be set to
a high value, since collateral damage to the mosque
would lower the assessment of success toward effect.
The comparison of planned to actual result would
indicate success only if the attack were extremely
precise, that is, resulted in no damage to the mosque.

By this method we develop visualization concepts for
each primitive within the context of the system
requirements. Common combinations of requirement
and cognitive work elements are collected together into
common visualization concepts. The individual
concepts then are aggregated into higher-level
collections to form visualizations at the screen level.
This process is iterated against the CORE system
model, thereby allowing validation of visualizations by
ensuring that the system follows the processes outlined
in that model.

3.0 Integrating with GUI Builders
Good human factors designs are frequently “lost in
translation” between the original interface designers and
those ultimately responsible for system implementation,
much to the dismay of all parties. This is due largely to
a mix of communication and technical issues. In fact,
many software and systems engineers are ignorant of
human factors issues altogether, which makes the
inclusion of carefully designed solutions practically
impossible. One potential solution to this problem is to
include the work elements concept (which is one part of
a full human systems interface (HSI) solution) into the
tools used by the software community.

GUI builder applications are often the centerpiece for
software development. In addition to providing a visual
method for designing a software system’s interface,
many high-quality GUI builders offer features such as
round-trip software engineering, direct access to
software repositories, and the inclusion of robust
integrated development environments (IDEs). Some of
these utilities even support multiple programming
languages. Further modularity allows additional features
to be added by the vendor, or even by third parties.

A practical mechanism for including CWE components
is to include them within the GUI builder framework.
One way to do this is to make the CWEs available as
widgets within the framework, much like traditional
button and menu elements are presented as widgets. A
modular plug-in extension with the additional CWE
widgets could be used to implement this approach.

Detailed specifications and high-level descriptions
would be accessible for each CWE, either as a part of
contextual popup dialogs or explicit help text. These
specifications can be used to assist with the selection of
relevant CWE widgets, an especially valuable feature
for those implementers possessing a limited background
in cognitive science. Widget tooltips and representative
iconic images also will help the coder to quickly
identify the specific CWE desired.

5

Figure 1 depicts a representative GUI builder (Glade, in
this case). The area highlighted by the oval shows where
a modular CWE toolbar would be loaded into the
application. The intent is to make CWE as well-
integrated into the application as the rest of the widget
set. Therefore, the “look and feel” of the CWE module
is expected to be as similar to that of the native widgets
as possible, while simultaneously providing the specific
capabilities of the CWE functions.

Figure 1 Enhancing the GUI builder

A programmer’s selection and placement of a specific
CWE into the design accomplishes several tasks. First,
suggestions for implementing the CWE are presented to
the programmer. (There may be several ways the CWE
can be implemented or represented.) The CWE itself
may be a visually-oriented or algorithmically-oriented
component. For algorithms, a wizard will assist the
programmer by providing a selection of relevant
algorithms, their descriptions, specifications, and
references. For visual components, the wizard might
display the various visual representation options to the
programmer.

In addition; operational code, code templates, or
pseudo-coded (comment-based) solutions can be
directly inserted into the code base. The options selected
from the wizard indicate the CWE implementation to be
included in the code. The generated code is managed
within the GUI builder just as with the other drag-and-
drop widgets.

Another benefit is that comments can be injected into
the code surrounding the CWE implementation. These
comments are explicit notations that CSE issues are
directly addressed within the coded application. The
construction wizard should allow the programmer to

include clear text, to be added as comments
corresponding to the CWE being constructed.

Finally, comments in the code provide a record of
traceability back to the system’s requirements. This
encourages quality assurance by linking the specific
requirement to the reason a particular feature or
operation is implemented in a certain way. The
requirement identifier is assumed to be a clear text
string that can be captured by the CWE construction
wizard and automatically included in the generated
code.

Again, consider the CWE “compare.” When the
programmer has selected and placed this widget, a
wizard introduces a series of questions: What
requirement does this meet? Is this a visual or a
conceptual comparison? Visual comparison might
include options to show items side by side within a
tabbed window, as a popup, or interlaced (as in visual
code diffs). Should the display be hard-coded, or
selectable by the end user? Perhaps the end user’s
requirement is only to examine the differences between
several items, or perhaps the end-user must make a
selection based on the comparison. If a selection is to be
made, how will that selection be indicated to the
system? Does the system make a recommendation to the
user? (If so, what is the name of the method or function
to be called to assist with that comparison?) If the
“compare” CWE is conceptual only, then the wizard
might ask the programmer for the method or function
names to call for the comparison, and how to indicate
the status of the operation. The wizard can be used to
guide the coder through all of these issues, and
decisions can be captured and annotated as comments in
the code. This information will be valuable for
justifying implementation decisions.

4.0 Conclusion
We have described an often-ignored, but important,
component of software system design: The cognitive
aspect. In this paper, we described a method that not
only encourages the inclusion of cognitive components
into the design, but also introduces a practical
mechanism through which software implementers can
directly incorporate key cognitive aspects into the code.

One reason it is important to define such cognitive
components is to ensure that human cognitive needs and
expectations are properly included at the system
specification level, early in the design process. Systems
engineers can use these definitions as key inputs by
incorporating them into early definition processes and
products (DoDAF, etc.) See [4--7] for examples of
integrating cognitive work requirements into the design

6

process.

Another reason a mechanical approach to including
cognitive components is needed is to provide a mapping
from the software directly to the cognitive requirements.
Such traceability is an important part of a unified
systems engineering process.

5.0 References
[1] Conrad, K., & Stanard, T. (2007). Advanced design
patterns: Enabling designers of complex systems.
Proceedings of the 2007 International Conference on
Software Engineering Research and Practice, 1-7.

[2] Stanard, T., Osga, G., Wampler, J., & Conrad, K.
(2006). HCI Design Patterns for C2: A vision for a DoD
design reference library. Proceedings of the 2006
Command & Control Research and Technology
Symposium, San Diego, CA.

[3] Stanard, T., & Wampler, J. (2005). Work-centered
HCI design patterns. Proceedings of INTERACT 2005:
Communicating Naturally through Computers, Rome,
Italy.

[4] Christopher R. Hale. Executable Requirements for
Visualization Design. 2006 Human Factors and
Ergonomics Society Conference. San Francisco, CA.

[5] Christopher R. Hale. Visualization Design Using an
Integrated Joint Cognitive System Development
Methodology. 2008 Human Factors and Ergonomics
Society Conference.

[6] Christopher R. Hale and Vincent Schmidt. Four
Challenges, and a Proposed Solution, for Cognitive
System Engineering – System Development Integration.
2008 Industrial Engineering Research Conference.
Vancouver, BC.

[7] Dave O’Malley, Jon Zall, John Colombi, and Joe
Carl. Integrating Cognition into System Design. 2008
International Conference on Software Engineering,
Research, and Practice. Las Vegas, NV.

	1.0 Introduction
	2.0 Work Elements
	3.0 Integrating with GUI Builders
	4.0 Conclusion
	5.0 References

